该项技术可用于生产国家点火装置目标的内部结构,以及光学超材料、机械超材料以及电化学电池的增材制造,使其易于检测。目前唯一的限制因素是加工速度,所以研究人员接下来会将继续对该技术进行优化,以缩短加工时间。
劳伦斯·利弗莫尔国家实验室(LLNL)的研究人员研发出一种用于提升双光子光刻(TPL)技术性能的新方法,通过“折射率匹配”方法和对材料的优化设计改善了该技术应用于增材制造的局限性,最小可制造人类头发宽度百分之一的纳米特征。
常规双光子光刻技术使用薄载玻片、透镜以及浸镜油辅助激光进行增材制造,使激光在需要固化的位置点进行聚焦。双光子光刻技术与其他增材制造技术的区别在于其加工分辨率更高。同时,该技术规避了其他增材制造技术所面临的衍射极限难题,与一般增材制造技术所采用的仅吸收一个光子即发生固化反应的光敏材料不同,该技术采用的光敏材料需要同时吸收两个光子才能够固化成形。
研究人员改进了加工工艺,将光敏材料直接置于透镜上并透过光敏材料使激光聚焦,从而制造出几毫米高的结构。由于激光在穿过光敏抗蚀剂材料时会发生折射,解决这一难题的关键在于“折射率匹配”方法,针对双光子光刻技术优化了光敏材料,将光敏材料的折射率与透镜浸润介质(浸镜油)的折射率相匹配,通过使用经过折射率匹配的光敏材料,可使激光可以畅通无阻地通过,从而解除传统双光子光刻技术对成形构件最大尺寸的限制。“折射率匹配”方法的应用使得采用增材制造技术制造具备100纳米结构特征的较大尺寸零件成为可能。
此外,研究人员还能够调整并增加光敏材料对X射线的吸收率,使成形构件对X射线的吸收率比常规材料提高10倍以上,以便使用X射线计算机断层扫描(CT)技术作为检测工具,对增材制造部件内部或者对人体内的增材制造物体(如支架管、置换关节、骨支架)进行无损成像检测。
该项技术可用于生产国家点火装置目标的内部结构,以及光学超材料、机械超材料以及电化学电池的增材制造,使其易于检测。目前唯一的限制因素是加工速度,所以研究人员接下来会将继续对该技术进行优化,以缩短加工时间。他们计划未来使用该技术构建更小的特征结构并增加更多功能,最终使用该技术生产真正的关键部件。