供需大厅

登录/注册

公众号

更多资讯,关注微信公众号

小秘书

更多资讯,关注荣格小秘书

邮箱

您可以联系我们 info@ringiertrade.com

电话

您可以拨打热线

+86-21 6289-5533 x 269

建议或意见

+86-20 2885 5256

顶部

荣格工业资源APP

了解工业圈,从荣格工业资源APP开始。

打开

绿色激光熔化纯铜

来源:国际工业激光商情 发布时间:2020-11-13 744
工业金属加工工业激光激光设备零部件光学材料与元件其他 技术前沿
收藏
弗劳恩霍夫材料与束技术研究所首次在纯铜上采用创新激光熔化系统

如今,3D打印技术不仅可以制作形状复杂的塑料艺术品,还被广泛应用于各行各业。但纯铜和塑料却不同,现在还不能使用红外激光对纯铜实现完全熔化,以构建复杂的工件。对此,位于德国亚琛的弗劳恩霍夫材料与束技术研究所(FraunhoferIWS),采用了一种新型的增材制造系统,其装载的短波绿色激光束能轻松熔化铜。


1605251758797362.jpg

新的增材制造系统完全融化了纯铜粉


通过使用该技术,使以前无法构建的铜制工件成为可能。至此,未来由纯铜、铜合金材质构成的复杂部件,也将被应用于航空航天、自动化等工业领域,为提高电动机和热交换器效率提供了保障。


如今,弗劳恩霍夫材料与束技术研究所通过全新的增材制造系统,设计制造兼具导热性和导电性的纯铜制件。在电子电力行业,这些纯铜组件能提供更高效的电动机和散热器。并且,纯铜组件在线圈和传感器上的应用也变得有可能。通过增材制造生产的铜组件,特别适合安装在紧凑型设备里,同时保证高效率和高性能。例如未来电子电力设备中的高效散热器,以及卫星电力驱动使用的特制线圈,太空推进系统的冷却系统等。


配备同等设备的研究机构屈指可数


在萨克森,这种全新的激光束熔化系统还是独一无二的,甚至在德国其他地方也不多见。替代1064nm红外波长,该系统采用的是515nm高能量密度的盘状绿色激光束。“以往的实验表明,即使红外激光功率达到500W,还是不能有效熔化纯铜制件,”该项目负责人SamiraGruber表示。


1605251787903944.jpg

德累斯顿增材制造中心的“TruPrint1000”设备


实际上,采用红外激光对铜件进行作业时,只有30%的激光能量进入工件内部,其余大部分能量被铜反射掉。但用500W绿光激光加工时,却得到了不一样的结果。这次铜件吸收了70%的激光能量,从而实现了理想的熔化效果,这也将大大提升增材制造领域中铜件的参与率。


纯铜是导电和导热的绝佳材料


因为铜具有优异的导电性和导热性,所以如果在增材制造领域能广泛应用,铜件也将发挥其最大优势。“当前在航空航天、电子、汽车行业,铜件或是铜合金制件扮演着十分重要的角色,”研究所增材制造设备带头人ElenaLopez对此强调。


ElenaLopez进一步谈到:“相比传统铝制工艺方法,通过增材制造生产的铜件在特定体积的电导性上表现得更为出色,这也是生产高性能小型设备厂商非常感兴趣的地方。目前,铜件在机械加工、铸件领域中应用广泛,然而增材制造技术将重新诠释加工工艺,为制造复杂几何形状的工件提供解决方案。”


紧凑高效的设计带来更高的性能


“现在,由增材制造带来的几何外形灵活性的增加,为进一步延长铜质组件的冷却能力提供了机会,从而延长了铜质组件整体的使用寿命,”SamiraGruber解释道。据悉,研究人员采用的方法是,重新设计激光器的冷却通道,从而让作业中的液体和气体压力损失降至最低,让更多的激光能量被工件表面吸收。


增材制造:萨克森研究人员参与其中


研究所的这项新设备是通过“智能制造与材料”工艺中心发布的。该中心是由开姆尼茨工业大学(TechnischeUniversitätChemnitz)、德累斯顿工业大学(TechnischeUniversitätDresden)和弗劳恩霍夫材料与束技术研究所(FraunhoferInstitutesIWS)联合发起的,其中心成员还有像ENAS、IWU、IKTS,该中心旨在推动创新工业制造和工业4.0。


1605251824390556.jpg

复杂的铜零件是逐层制造的,例如散热器


目前这台“TruPrint1000”机器装备在德累斯顿增材制造中心(AdditiveManufacturingCenterDresden)。未来,研究人员将与德累斯顿的科学家们一起,在增材制造工艺研发上继续投入。



延伸阅读


纯铜及铜合金由于极好的导电、导热、耐腐蚀性及韧性等特点,被广泛应用于电力、散热、管道、装饰等领域,有的铜合金材料因具有良好的导电、导热性和较高强度,被广泛应用于电子制造、航空、航天发动机燃烧室部件。


早在2015年,NASA就取得了铜合金部件3D打印方面的进展,制造技术是选区激光熔化3D打印,打印材料为GRCo-84铜合金。NASA用这项技术制造的3D打印零件为火箭燃烧室衬里,该部件总共分为8255层,逐层打印,打印总耗时10天零18个小时。


这个铜合金燃烧室零部件内外壁之间具有200多个复杂的通道,制造这些微小的、具有复杂几何形状的内部通道,即使对增材制造技术来说也是一大挑战。部件打印完成后,NASA的研究人员使用电子束自由制造设备为其涂覆一层含镍的超合金。NASA的最终目标是要使火箭发动机零部件的制造速度大幅提升,同时至少降低50%的制造成本。


铜感应器线圈


一般来说,电感应器中的电感线圈需要经历若干机械制造工序。线圈通过手动弯曲和焊接达到想要的形状,其中小块铜(管)被放在一起并焊接,焊接是一个耗时的过程并且导致大量的生产成本产生。


几何形状越复杂的电感线圈,需要焊接的单个元件越多。当为了获得所需的几何形状而需要彼此相邻的多个焊点时,必须使用几种具有不同熔点的焊接剂,以便在施加第二焊料时第一焊料不会松动。


手工制造的电感器的工作时间和质量不能满足行业不断增长的需求。而通过金属增材制造,可以实现优质的零件,这些零件具有高度复杂的几何形状,从而满足规模生产的需求。没有焊接接头的3D打印电感器需要更少的能量,具有更高的效率并且可以实现均匀的硬化结果。


铜热交换器


粉末床熔化增材制造技术为制造使得紧凑、高效的新一代热交换器成为可能,如果将金属3D打印技术与具有出色导热性能的铜相结合,为电动汽车热交换器技术的提升带来巨大的想象空间。随着铜合金、纯铜的增材制造变得更为成熟,也为制造高性能铜金属热交换器做了铺垫。结合面向增材制造的设计,将加速新能源汽车等领域换热器产品的创新。(延伸阅读部分来源“3D科学谷”)




文/弗劳恩霍夫材料与束技术研究所


收藏
推荐新闻