先进位置编码器技术提升光刻工艺水平

来源:荣格国际工业激光商情

发布时间:2019年6月17日上午 02:06:33

光刻技术,顾名思义就是一种用光刻印的技术,它广泛应用于半导体制造行业 以及许多其他纳米技术应用中;为适应当今微电子产品日趋微型化的趋势,相 关应用领域越来越需要具备高生产能力的光刻设备。

本文探讨了位置反馈技术在现 代光刻工艺中的应用,以及 最新光栅系统和传统激光尺 系统各自的优势与潜能,这些特性为 机器设计人员提供了极大的灵活性, 使其能够探索如何在不影响性能的前 提下最大程度地减少光刻设备的占地 面积。

半导体制造

在光刻工艺中,通常首先在硅晶 圆上沉积一层光敏性光致抗蚀剂材料 (光刻胶)。然后,光束通过光掩模 照射到晶圆上,以将掩模图形呈现在 光刻胶上,再使用显影剂溶解掉经过曝光的光刻胶区域。最后,选择性地 在晶圆表面上的裸露区域内进行蚀刻 或填充半导体、导电或绝缘材料。通 过这种方式,便可构建出所需的多个 微电子特征层(通常要进行大约 30 次 光刻流程)(参见图 1)。

 图1:显微镜下的硅晶圆

浸没式扫描光刻机包含一套透镜 系统,用于使光束穿过光掩模或“中 间掩模”聚焦到半导体晶圆上。它还 含有一组密封元件,可在物镜和半导 体衬底之间封入一定体积的液体,由 于液体的光线折射率高于空气,因此 可以获得更高的光学分辨率和更小的 特征尺寸。

在浸没扫描中,光束保持固定,而由于透镜的倒置效应,光掩模和晶 圆需沿相反方向运动。这需要将位置 精确反馈到光掩模和晶圆运动平台上 的控制致动器,以实现高精度的运动 控制。可使光源以一定频率闪烁,以 便每次曝光晶圆上的不同区域。

光掩模与晶圆衬底精确对准,使 得每片掩模上的图案均可精确刻画到 已经存在的蚀刻图形层上。这一步骤 是制造集成电路 (IC) 的关键:晶圆和 光掩模上的基准点自动对准,误差范 围小于 ±20 nm,具体取决于 IC 的特 征尺寸,并修正 X、Y 和 θ(旋转) 方向上的偏置。

每个平台的长距离增量式测量系统上都需使用直线光栅,以确保位置 和速度都达到指定的精度。高精度光 栅反馈使中间掩模和晶圆平台能够串 联工作,实现以要求的覆盖精度执行 计划扫描轨迹。激光尺和一些最先进 的光栅可以满足这一半导体制造工艺 的苛刻精度要求,例如雷尼绍的最新 光栅 VIONiC ™系列,其电子细分误 差低至 <±15 nm。

平板显示器制造

平板显示器 (FPD) 制造中应用的 传统光刻工艺也用于半导体芯片制造。 芯片研发的一个主要驱动因素是电子 设备尺寸的愈加微型化。另一方面, 在 FPD 行业内,则按照能够制造出的 玻璃基板的最大物理尺寸(单位为平方毫米)对每一代制造技术进行分类。例如,第十代 (G10) FPD 是从 2880 mm×3080 mm 的玻璃基板上切割的。薄膜晶 体管 (TFT) 是必不可少的显示器元件,其临界尺寸 (CD) 接 近 3 微米,在好几代制造工艺中都保持稳定。

 2:空间光调制器 (SLM) 成像单元

每一代新产品都可加工出更大的基板,因此必须提高生 产率,实现通过单次曝光在基板的更大区域内形成电路图案。 有人提出将多透镜系统作为问题解决方案,以覆盖更大区域。 然而,FPD 行业的一个重大挑战是制造和处理越来越大 的光掩模,因为光掩模尺寸必须与基板尺寸成正比。无掩模 投射系统逐渐流行,成为 FPD 生产中的替代技术。其中有 这样一种技术,即使用空间光调制器 (SLM) 以类似于数字 印刷的方式直接在基板上刻画图案。

图 3:带 SLM 成像单元的并行光刻系统

例如,一种并行光刻系统,如图 3 所示,包含呈并行阵 列排布的一组 SLM 成像单元,每个单元又包含一个 SLM 压 模组件、一个球面镜、多个光源和一套投射透镜组件,如图 2 所示。SLM 压模组件是 MEM(微机电系统)器件,具有 数千个可控微型镜组,通过镜组的倾斜可使入射光在透镜焦平面中产生高对比度的明暗掩模图案。 需要精确的运动控制来协调成像单元及 其下方面积更大的基板运动平台。在这 种情况下,基板沿着 X 轴移动,SLM 单元沿着 Y 轴移动,如同打印头一样。 两个平台均由空气轴承支撑,并由直线 电机驱动。

可以使用视觉识别系统通过基板 平台上的参考标记来引导成像单元的运 动。这类系统也可以配用卷对卷柔性基 板。

在这类制造系统中,除了提供用于 直线电机换向的数据之外,位置传感器 反馈还有助于精确控制位置。为了达到 FPD 行业要求的对准精度,即 <±2 微 米,编码器的分辨率要显著小于 1 µm。高性能直线光栅和 干涉测量激光尺适用于此类应用,如雷尼绍的 VIONiC 光栅 和 RLE 光纤激光尺系列。

未来的高通量纳米蚀刻技术

现代光刻技术是在整个硅晶圆上扫描或步进光掩模,长 期目标是以低成本实现纳米级分辨率和高通量。无掩模直写 光刻技术无需使用众多昂贵的光掩模,而恰恰是掩模限制了 最新型微电子器件的最小可实现特征尺寸。

图 4:近场扫描光刻设备   图 5:带蝴蝶结形孔的 NSOL 掩模(底视图)

近场扫描光刻 (NSOL) 特别适合这类应用,因为它可以 突破分辨率的瑞利衍射极限。如图 4 和图 5 所示,NSOL 技 术使用具有纳米尺寸孔径的扫描探针作为掩模上的“超衍射极限”光源,可在光学近场尺度范围内直接写入表面特征。 从这些纳米尺寸孔径射出的光会严重发散高达几十纳米,因 此必须精确控制掩模和基板之间的间隙,使其维持在几十纳 米之内,这对于确保工艺性能至关重要。

通过用激光依次扫过每个孔,可以直接在基板上构建图 像。多轴压电平台用于相对于掩模定位基板。这些平台的位 置编码器反馈需要保持在亚纳米级分辨率范围内,因此激光 干涉仪型系统更适合进行更精细的调整。传统的高性能光栅 可以用于粗调直线电机平台的换向。

高精度运动平台的重要性

光掩模运动平台是光刻设备的核心技术之一,这些先进 的运动平台使用包括音圈电机 (VCM) 在内的多种不同类型 的电机执行粗略 (>100 mm) 运动控制和更精细 (<2 mm) 的运 动控制。运动命令模式通常是“加速 — 匀速 — 减速”类型。 典型的掩模平台通常具有六个自由度,要用到多根需要高精 度位置反馈的驱动轴。高分辨率、高速度和低延迟的位置编 码器是动态平台定位的关键,因为它们可以尽可能增加带宽 并降低不稳定性。在这些应用中,编码器的选择至关重要。 编码器的周期误差低,则对伺服回路的输入负载干扰较小, 从而实现更精细的速度控制。使用精心设计的安装工具(例如与 VIONiC 配用的 Advanced Diagnostic Tool (ADTi-100)) 妥善安装,更可实现编码器的最佳整体性能。

总结

先进的光栅技术可满足光刻工艺苛刻的高精度、重复 性和稳定性要求。对于某些反馈应用,机器设计人员应考 虑紧凑型先进光栅解决方案是否能够替代传统的干涉测量 激光尺系统。鉴于无掩模光刻技术的进步,有朝一日可能 不会再需要光掩模的多重曝光,但未来对测量性能的要求 一定不会降低。

关于雷尼绍

雷尼绍是世界领先的工程科技公司之一,在精密测量和 医疗保健领域拥有专业技术。公司向众多行业和领域提供产 品和服务 — 从飞机引擎、风力涡轮发电机制造,到口腔和 脑外科医疗设备等。此外,它还在全球增材制造(也称 3D 打印)领域居领导地位,是英国唯一一家设计和制造工业用 增材制造设备(通过金属粉末“打印”零件)的公司。 了解详细产品信息,请访问雷尼绍网站: www.renishaw.com.cn

Tell A Friend

评论

Image CAPTCHA